Learning about learning: patterns of sharing of research knowledge among Education, Border, and Cognitive Science fields

This study explores the patterns of exchange of research knowledge among Education Research, Cognitive Science, and what we call “Border Fields.” We analyze a set of 32,121 articles from 177 selected journals, drawn from five sample years between 1994 and 2014. We profile the references that those articles cite, and the papers that cite them. We characterize connections among the fields in sources indexed by Web of Science (WoS) (e.g., peer-reviewed journal articles and proceedings), and connections in sources that are not (e.g., conference talks, chapters, books, and reports). We note five findings—first, over time the percentage of Education Research papers that extensively cite Cognitive Science has increased, but the reverse is not true. Second, a high percentage of Border Field papers extensively cite and are cited by the other fields. Border Field authors’ most cited papers overlap those most cited by Education Research and Cognitive Science. There are fewer commonalities between Educational research and Cognitive Science most cited papers. This is consistent with Border Fields being a bridge between fields. Third, over time the Border Fields have moved closer to Education Research than to Cognitive Science, and their publications increasingly cite, and are cited by, other Border Field publications. Fourth, Education Research is especially strongly represented in the literature published outside those WoS-indexed publications. Fifth, the rough patterns observed among these three fields when using a more restricted dataset drawn from the WoS are similar to those observed with the dataset lying outside the WoS, but Education Research shows a far heavier influence than would be indicated by looking at WoS records alone.

https://doi.org/10.1007/s11192-019-03012-3

Author(s): Alan L. Porter, David J. Schoeneck, Jan Youtie, Gregg E. A. Solomon, Seokbeom Kwon, Stephen F. Carley
Organization(s): Search Technology, Georgia Tech, US National Science Foundation
Source: Scientometrics
Year: 2019

Leave a Reply

Your email address will not be published. Required fields are marked *