## Title: Discussion of Moves Recognition of Scientific Documents under limited Samples

## Zhang Xin<sup>1,2</sup>, Xu Haiyun<sup>3</sup>

Chengdu Library and Information Center, Chinese Academy of Sciences, Chengdu, 640213
Department of Library, Information and Archives Management, University of Chinese Academy of Sciences, Beijing, 100190

3 Business School, Shandong University of Technology, Zibo, 255000

## Abstract:

Moves Recognition refers to extracting semantic segments such as research purposes, objects, methods, results, and conclusions from unstructured abstracts. Moves recognition is an important approach for extracting structured information of papers and plays an important role in downstream text understanding tasks.

In this paper, aiming at the common few-shot labeling problem in actual move recognition task, the application of data augmentation and the prompt-based classification paradigm is discussed, and the LIME method is used to semantically explain the model results.

Prompt tuning on large model achieved higher accuracy than the fine-tuned small model on moves recognition task with less training cost, and the f1\_score was improved by 2.5%, 4.1% and 3.9% on the three datasets. Combining the accuracy rate and interpretation results, the "method" and "result" moves recognition effect is better (f1\_score about 90%), followed by "conclusion" (f1\_score>75%), and the "background" and "method" moves are relatively poor (f1\_score<70%).

Keyword: Few-shot, Data Augmentation, Prompt Turning, Explainable

|            | Db100 | Db500 | Db1800 |  |  |
|------------|-------|-------|--------|--|--|
| Total      | 100   | 500   | 1800   |  |  |
| Background | 9     | 48    | 234    |  |  |
| Object     | 14    | 45    | 131    |  |  |
| Method     | 22    | 180   | 581    |  |  |
| Result     | 33    | 163   | 578    |  |  |
| Conclusion | 22    | 64    | 276    |  |  |

Table1 Datasets Description

Table2 Moves Recognition Results (f1 score)

| Database<br>Classifier | Db100  | Db-500 | Db1800 |  |  |
|------------------------|--------|--------|--------|--|--|
| Na ïve Bayes           | 0.3380 | 0.5520 | 0.5920 |  |  |
| SVM                    | 0.3210 | 0.5350 | 0.6710 |  |  |
| BERT                   | 0.6810 | 0.7650 | 0.8000 |  |  |
| Prompt(BERT-base)      | 0.6560 | 0.7700 | 0.7980 |  |  |
| Prompt(T5-base)        | 0.7060 | 0.8060 | 0.8350 |  |  |



Figure2-6 LIME Explanation of "Background Objective Methods Results" and "Conclusions"