

REUTERS/Yuya Shino

People Disambiguation Engine and Analysis of Russian Science in Web of Science (2007-2011)

Ilya Ponomarev, Victor Shyu, Pawel Sulima, Eva Darian, Ronan Sorensen, Brian Lawton, Ciaran Bolger, Etienne Godard, and Joshua Schnell

ilya.ponomarev@thomsonreuters.com

Custom Analytics, Rockville, MD

Outline

- 1. People disambiguation for research management: why it is important?
- 2. Custom Analytics at Thomson Reuters: PDE solution
- 3. Example: Russian Map of Science Project (Challenges, Solutions, Validation)
- 4. Enabling new analytical capabilities with new bibliometric indicators

Name Disambiguation

Research Management DBs about events: Publications, Patents, Grants, Documents

Name Disambiguation: the process of detecting and correcting ambiguous *named entities* that represent the same real-world *object*Synonyms: name unifications, matching, entity resolution, authorship

Approaches: supervised, unsupervised, semi-supervised, ORCHID How to build scalable approach?

People Disambiguation for Research Management – Why It Is Important?

Productivity

Citation Impact

Improved accuracy

Research Area Interests

Affiliations

Co-authors

Publication profile

- Recommendation engine of reviewers, conferences, grants, collaborations
- Conflict of interests

Research mobility tracking

- Hiring
- Grant success

Matching with other people DBs

Scientometric Indicators

- Normalization on distinct people count
- Collaboration
- Benchmarking

People Disambiguation Engine

Custom Analytics Rockville, MD

Projects Workflow: Custom Analytics Group

.....

- Project oriented
- 2. Scalability
- 3. Semantic and context-aware
- 4. DB-centric system

PDE Engine

New Knowledge

PDE: Vocabulary

Descriptor - a group of attributes describing a person

- Can be complicated (e.g. a list of co-authors)
- Includes a link to source

Descriptor pair - two descriptors linked together

```
PD1 | PD2 |
Bob | Robert |
Smith | Smith |
geneguy@umd.edu | GeneGuy@umd.edu |
etc. etc.
```

PD1 | PD4 |
Bob | Bobby |
Smith | Smith |
geneguy@umd.edu | |
etc. etc.

OVERALL STRUCTURE

EVALUATORS: List of Comparisons Performed

Attributes:

- 1. Names
- 2. Emails
- 3. Co-authors
- 4. Self-citations
- 5. Citations
- C D-f----
- 6. References
- 7. Common words in titles
- 8. Subject categories (similar journals)
- 9. Affiliations

Summary of Process

RMOS PROJECT

RMOS Project Goals

 Create Map of the Most Productive Research Organizations in Russia

(Russian Ministry of Edu and Sci, PWC, NICON)

- 1. Collect all papers with at least 1 Russian affiliation in 2007-2011
- 2. Disambiguate organizations in these papers
- 3. Disambiguate people on these pubs

Sounds simple

Challenges

Author disambiguation in Publication DBs

- 1. Complexity: there are 180,000,000 descriptions of people in WoS (51000 years of calculations by brut force algorithm)
- 2. Orthographic and spelling name variants (author, publisher, OCR-DB soft)
- 3. Real name changes over time (marriage)
- 4. Incomplete data (First Name vs First Initial vs NULL)
- 5. Parsing errors (First name in MiddleName field)
- 6. Incorrect or ambiguous links to other attributes, incorrect attributes
- 7. Name commonality (Li, Wang, Ivanov)

Challenges

Project Specific Challenges: Preprocessing Organizations Unification and Ambiguous links

St Petersburg State Univ	4072	53
Moscow MV Lomonosov State Univ	12352	113
Dusamb Org	# addresses	# WoS orgs

Ambiguous links recovery

Year	Total Number of publications	Number pubs without Author- address link	% without Author- Addres s link (before)	Number pubs with recovered links	Recovery rate, %
2007	31.0K	24.6K	79%	12.6K	52%
2008	33.3K	5.3K	16%	5.0K	96%
2009	33.3K	5.4K	16%	5.2K	98.8%
2010	31.9K	4.8K	15%	4.7K	98.7%
2011	32.5K	4.6K	14%	4.5K	98.7%
Total	161.9K	44.6K	27%	32.0K	72 %

Strong recovery rate in 2008-2011

RMOS Project Results

Validation

Choosing threshold: precision/recall/accuracy tradeoff

Evaluation measures:

Pairwise Precision = $\frac{\# \ pairs \ correctly \ predicted \ to \ the \ author}{\# \ total \ pairs \ predicted \ to \ the \ author} = 96\%$ Pairwise recall = $\frac{\# \ pairs \ correctly \ predicted \ to \ the \ author}{\# \ total \ pairs \ to \ the \ author} = 90\%$ Pairwise F1 = $\frac{2 \times Precision \times Recall}{Precision + Recall}$

Caveat: Error is larger in common name clusters

- Lumping assigning articles by different people to the same person
- Splitting assigning articles by the same person to different people

New Knowledge – Benchmarking the Whole Country Distributions 2007-2011

Having 1 pub - 86.5K Habing 2 pubs - 24.7K Habing 3 pubs - 12.6K Habing >3 pubs -35K

Max papers – 321
Top 1% - 29
Average - 3
Median - 1

Max cites_pub - 543
Top 1% - 62.
Average - 4.5
Median - 1.

Thank You!

Contacts

- Joshua Schnell joshua.schnell@thomsonreuters.com
- Victor Shyu <u>victor.shyu@thomsonreuters.com</u>
- Ilya Ponomarev <u>ilya.ponomarev@thomsonreuters.com</u>

