
If you want to cite this article, please use the following text, thank you. 

 

Li, Munan; Porter, Alan L.; Suominen, Arho; Burmaoglu, Serhat; Carley, Stephen. (2021). An 

exploratory perspective to measure the emergence degree for a specific technology based on 

the philosophy of swarm intelligence. Technological Forecasting and Social Change, 166: 

120621. https://doi.org/10.1016/j.techfore.2021.120621. 

 

An Exploratory Perspective to Measure the 

Emergence Degree for a Specific Technology Based on 

the Philosophy of Swarm Intelligence 

Munan Lia, Alan L. Porter b,c, Arho Suominend, Serhat Burmaoglue; Stephen Carleyc 
 

a School of Business Administration, South China University of Technology, Guangzhou, China 
b School of Public Policy, Georgia Institute of Technology, Atlanta, GA, United States 

c Search Technology, Norcross, GA, United States 
d VTT Technical Research Centre of Finland, Espoo, Finland 

e Faculty of Economics and Administrative Sciences, Izmir Katip Celebi University, Izmir, Turkey 

 

Abstract-How to evaluate or measure the emergence degree or level for a specific technology is rarely 

discussed in the prior studies, and it should be a valuable issue for the relevant areas on  technology 

forecasting, foresight, and technological strategies for macro and micro economies, particularly for those 

emerging economies who are chasing the technology advances in the developed countries. A conceptual 

framework inspired by swarm intelligence theory is introduced to measure the emergence degree or level 

for a specific technology. Swarm intelligence belongs to complex systems theory, and has evolved into 

a helpful tool for heuristic algorithms and optimization computation, and brought forward an insightful 

perspective on the evolution and emergence of natural or social systems in the past decades. To verify 

the proposed framework for measuring emergence degree of a specific technology based on the basic 

philosophy of swarm intelligence, a case study analyzes an annual set of emerging technologies of the 

World Economic Forum. The theoretical and empirical analyses could present a fresh vision to 

investigate the essence of technology emergence, and provide some supplemental thoughts for the policy-

making on those emerging or new technologies. 
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1 Introduction 

During past decades, a variety of emerging technologies have had a profound impact on 

the eco-social system through technical evolution, or revolution. The studies on technological 

paradigm and technology evolution offer important facets to strategic management, innovation, 



and Science and Technology (S&T) policies (Dosi, 1982; Teece, 1986; Devezas, 2005; Chen et 

al., 2012; Aharonson and Schilling, 2016). Forecasting and foresight on emerging technologies 

have become increasingly critical prerequisites for subsequent policy-making, especially for 

national strategic S&T policies (Martin, 2010; Li, 2017). Identification of emerging 

technologies is also valuable to mission-oriented policy design (Mazzucato, 2016).  

However, very few studies ever mentioned whether technology emergence can be divided 

into different degree or levels. In another words, while a specific technology observing by a 

director of R&D department, how to know this technology has emerged, or not emerged yet, or 

is emerging now, and so forth. Besides, while this R&D director is observing several 

technologies, how to compare the emergence degree or level among the different technologies. 

Obviously, measuring emergence degree or level of the different technologies is meaningful for 

the decision context of R&D investment, and could also be valuable for the policy-making of 

STI (Science, Technology and Innovation).  

Basically, modeling the complex socioeconomic system of technological development 

relies heavily (not exclusively) on the notion of S-shaped growth. Some empirical work has 

shown the S-shaped growth model to be particularly fitting (Devezas, 2005; Li, 2015). While 

discussion continues on the shape and linearity of development (Suominen and Seppänen, 

2014), the existence of clear phases seems supported. 

 

Figure 1. S-curve of technology evolution. 

Regarding the Figure1, Li (2015) implied that policies promoting technology development 

should be characterized by the phase of a technology in its evolution. In this evolution, 



bibliometric indicators, such as patents, are seen as being important indicators of evolutionary 

stage progression. Existing indicators are not without issues and often fall to flaws in 

assumptions (Suominen and Seppänen, 2014). For example with patents, there is a debate on 

the unilateral effect of patent indicators; a better solution could rely on the hybrid or multi-

dimensional indicators (Porter, 1999; Daim et al., 2006; Érdi et al., 2013; Li, 2015).  

However, contemporary studies on identifying the evolution phase of technology still rely 

on domain experts’ opinions using methods such as Delphi. Large-scale interviewing of domain 

experts is challenged by its resource intensity. Meanwhile, integrating different opinions and 

resolving differences among experts could also present theoretical or computational difficulties 

in the context of group or multi-variant decisions. Accurately identifying and measuring 

technological emergence of a specific technology, whether with qualitative or quantitative 

methods, or a combination, remains a challenge. 

Central to the challenge of measuring the technological emergence is to identify or 

measure whether emergence has occurred or has been occurring for a specific technology. We 

can model trajectories of well-known phenomena, but when it comes to novelties we are hard-

pressed to “explain the arrival” of a new technology. The connotation regarding technology 

emergence or emerging technology is still fragmented and lacking of uniform definitions 

(Rotolo et al., 2015; Li et al., 2018).  

To describe and measure the technology emergence, many ideas and indicators involving 

technology evolution ,emerging technologies, “tech mining” and so forth have been proposed 

and introduced (Porter, 1999; Li 2015; Carley et al., 2018; Porter et al, 2019). However, such 

relevant issues on the dynamic mechanism, observing dimensions and measuring the 

emergence degree or levels for a specific technology etc., still have the room for exploration 

and discussions. Because in the prior literature on technology emergence, the analytical results 

are only two choices: yes(1) or no (0). For example, through the patent analysis or text mining 

about a certain topic of technology, it can be concluded that the emergence on the specific 

technology occurred, or not. While observing the different technologies, how to compare the 

emergence degree or levels between technologies has to face the challenge. Therefore, 

measuring the emergence degree or levels for a specific technology could be a promising 

concept, and also could provide the supplemental knowledge for the traditional theories on 



technological forecasting, foresight and STI policy-marking etc. 

According to the theories of complex systems and actor-network of sociology (Callon，

1986; Harvey et al, 2015; Tao, 2018), if any participant of TE (technology emergence) is 

considered as the peer-to-peer actor or individual, the emergence of a specific technology could 

be taken into a phenomenon of self-organization activities at the large scale, just like the 

emergence of swarm intelligence. Inspired by the philosophy of  swarm intelligence 

emergence, a conceptual framework of measuring technology emergence is proposed and the 

relevant metrics and indicators are also explored in this context.  

2 Related Works Review 

Regarding the emergence of a specific technology, behind the emergence could be the 

large-scale activities related to the specific technology, which include technology R&D, 

technology transfer, technological entrepreneurship and the involvement of human resources 

and organizations enabling rapid growth in a macro (time and space) perspective. Aiming at the 

TE, the theories of complex system, e.g. self-organization, system dynamics and swarm 

intelligence and so forth, could provide an exploratory angle or perspective, and the sociology 

also could be another reference vision, for instance, behavioral side of individuals and actor-

network theory and so on (Callon, 1986; Sayes, 2014). Regarding the swarm intelligence theory, 

it is not only to describe the collective behavior on the flocks of birds, fish or cattle, but has 

evolved into the helpful means of simulation on system dynamics, social-eco system evolution, 

and optimization computation and on in the past decades (Soni et al., 2019; Mohammed et al., 

2020). 

Comparing the perspective of sociology, e.g. actor-theory or social networking, the 

emergence of swarm intelligence based on complexity theory, could provide some new ideas 

on the measuring or evaluating the emergence of technology (Reynolds, 1987; Holland, 1998; 

Chen et al, 2016;Tao, 2018). In the basic framework of SIE( swarm-intelligence emergence), 

there are such important features or dimensions as large-scale activities, relatively rapid growth 

of involved participants (herds, schools, flocks, or even people) and highly efficient 

transmission of signal (Reynolds, 1987 ; Vices et al., 1995). Based on the theory of emergent 

evolution, Tao (2018) argued that the similar phenomenon of swarm intelligence also can 



happen in human society or human behavior in the macro vision. Actually, the classic theory of 

herd behavior or the effect of sheep-flock had ever also been mentioned in several articles on 

business and management  (Lieberman & Asaba, 2006; Chen, 2008).  

In addition, emergence also could be one of basic concepts in modern complexity science, 

which includes theories such as synergetics, catastrophe theory, complex system, self-

organization, and swarm intelligence and so forth (Linstone, 1999; Fraser & Greenhalgh, 2001; 

Samet, 2012). Within complexity theory, Holland (1998) ever argued that the essence of 

Emergence is from small to big, from simple to complex. Therefore, an interesting question is 

inspired by swarm intelligence, i.e. these three features of swarm-intelligence emergence can 

be applied or introduced to evaluate or measure the TE? And then, the relevant question is, 

inspired by complexity theory, is if TE can be observed from the perspective of swarm-

intelligence.  

To further explore the measurement or evaluation on emergence degree for a specific 

technology, a quantitative method grounded in the philosophy of swarm intelligence emergence 

is proposed and discussed. Swarm Intelligence (SI), or swarm computation, collective 

intelligence, is a theory is derived from observations on the dynamic behavior of fish schools, 

bird flocks and animal herds, that can avoid the attack of predators and improve their survival 

rates through large-scale aggregation, distributed control and synchronous moving as a whole 

(Reynolds, 1987; Vices et al., 1995), and some social behavior of human also can be depicted 

by swarm intelligence (Chen, 2008; Tao, 2018; Soni et al., 2019). 

In traditional studies of technology evolution, TE and emerging technologies, most 

perspectives or methodologies focus on relevant theories of evolutionary economics, 

innovation, and dynamic capability; notably relying on complex systems and complexity 

theories is rare from the current debate. The prior studies relating to “technology emergence” 

were retrieved from multiple databases using the queries seen in Table 1. 

Table 1. Boolean search on technology emergence literature from three data sources. 

 Boolean Query Data source  Search result Timespan &Indexes 

#1 TS=”technolog* Emergence”  

 

Web of Science 

(WOS) Core 

48(44*) Timespan: 1986-2018. 

Indexes: SCI-EXPANDED, 



Collection SSCI, CPCI-S, CPCI-SSH, 

CCR-EXPANDED, IC. 

#2 TS=(“emerg* technolog*” OR 

“tech* emergence” OR “emergence 

of* technolog*” OR “emerg* scien* 

technol*”) ** 

Web of Science 

(WOS) Core 

Collection 

15,433 

Timespan: 1986-2018. 

Indexes: SCI-EXPANDED, 

SSCI, CPCI-S, CPCI-SSH, 

CCR-EXPANDED, IC. 

#3 TS=(“tech* emergence” OR 

“emergence of* technolog*” OR 

“emerg* scien* technol*”) 

192 

#4 TS=(“emerg* technolog*” ) 15,269 

 

*Excluding some noisy data, only 38 relevant articles remain from the first query; further checking of those 

cited papers in second level retrievals results in another 6 articles being included. Therefore, the matched 

count reaches 44 under a simple Boolean query regardless of a more complicated formula -- e.g., considering 

the synonyms and co-word analysis. 

** In #2 query, the search terms are from the article of Rotolo et al. (2015). Actually, the #3 query and #4 

query are also derived from # 2 query; while we excluded the term “emerg* technolog*”, 192 publications 

remain, in which only 61 publications present the significant relevance to TE after we carefully read the 

abstract of each publication. 

 

Regarding the TE and ET (emerging technology), Rotolo et al. (2015) thought that these 

two terms have similar connotation, and are often used in the same discourse or context. 

However, TE could be considered a phenomenon for a specific technology, and ET is often 

used to describe or define a specific new technology. Based on the formula of Query #2, two 

refined queries are shown in Table 2. 

Table 2. Two refined queries based on Query #2 in Table 1. 

 Boolean Query Data source  Search 

result 

Refined by 

#5 TS=(“emerg* 

technolog*” OR “tech* 

emergence” OR 

“emergence of* 

Web of Science (WOS) 

Core Collection 

Timespan: 1986-2018. 

Indexes: SCI-

9,059 DOCUMENT TYPES: 

(ARTICLE OR REVIEW) 

#6 1,815 DOCUMENT TYPES: 

(ARTICLE OR REVIEW) AND 



technolog*” OR 

“emerg* scien* 

technol*”) 

EXPANDED, SSCI, 

CPCI-S, CPCI-SSH, 

CCR-EXPANDED, IC. 

WEB OF SCIENCE INDEX: 

(WOS.AHCI OR WOS.SSCI) 

 

In this paper, the differences between TE and ET are not the key issues; in turn, how to 

evaluate the emergence degree for a specific technology still has the room for exploration and 

debating; therefore, the quantitative framework for measuring the emergence degree of a 

specific technology is proposed and discussed, and the efforts could provide a supplementary 

perspective to enhance the theoretical roots of TE and ET. 

Once the search scope about TE or ET is refined to social science and arts & humanities, 

there are about 1800 articles or reviews. The descriptive analyses on the results of #6 query are 

shown in Tables 3. 

Table 3. Top 10 journals of the relevant articles on TI and ET based on # 6 query 

Source Titles Record Count 

Technological Forecasting and Social Change 128 

Scientometrics   45 

Public Understanding of Science 32 

Nanoethics 30 

Technology Analysis and Strategic Management 25 

International Journal of Technology Management 23 

British Journal of Educational Technology 22 

Energy Policy 21 

Research Policy 21 

Sustainability 19 

Total 366 

 

From the results in Table 3, the relevant articles on TE or ET were primarily published in 

such journals: Technological Forecasting and Social Change, Scientometrics and Public 

Understanding of Science, etc. Regarding these 366 papers published in journals presented in 

Table 3, the co-occurrence of author keywords is shown in the Figure 3, which is visualized by 

the tool of VOSviewer. 



 

Figure 2. Co-occurrence of author keywords extracted from the papers in Table 3 1. 

 

Figure 3. The distribution over WoS Categories of these papers in Table 3 2. 

Based on the analytical results shown in Figure 2 and Figure3, the main categories of TE 

studies include business, communication, environmental sciences, interdisciplinary 

applications of computer science etc., and the high frequent terms involve technology 

forecasting, innovation system, foresight, patent analysis, text mining and bibliometrics and so 

on. Therefore, TE seems to be an operational construct. It appears to be taken as synonymous 

                             
1
 The tool of VantagePoint [http://www.theVantagePoint.com] is utilized in cleaning & analyzing the data. 

2
 The tool of VOSviewer [https://www.vosviewer.com/ ] is utilized in the Figure 4 based on the cleaning data 

generated by VantagePoint [http://www.theVantagePoint.com]. 



or derived from concepts such as emerging technology (Mogoutov and Kahane, 2007; Bozeman 

et al., 2007; Rotolo et al., 2015), technological entrepreneurship (Woolley, 2010), and tech 

mining (Hopkins and Siepel, 2013; Newman et al., 2014). The lack of theory can stem from the 

use of the construct in a retrospective way to observe or analyze emerged technologies, e.g., 

nanotechnology and biotechnology.  

In addition to the lack of an acknowledged definition of TE, quantifying TE also is not 

easy and riddled operational challenges (Burmaoglu et al., 2019; Porter et al., 2019). Ávila-

Robinson and Miyazaki (2013) suggested an approach to discern technology emergence 

through a proxy effect of dynamics of scientific knowledge bases. Some studies prefer to treat 

emergence of a certain technology in terms of occurrence phenomenon and later depict the 

linkages between TE and specific characteristics. For example, Woolley (2010) explored the 

relationship between TE and entrepreneurship activities across multiple industries and 

discussed that entrepreneurship first occurs in upstream industries, then enables the founding 

of firms in downstream industries and related sectors. Goeldner et al. (2015) discussed the 

emergence of care robotics based on patent and publication analysis. Raimbault et al. (2016) 

and Shapira et al. (2017) discussed the emergence of synthetic biology through the perspective 

of science mapping and bibliometrics.  

Recently, complex system and co-evolution theories are introduced to propel the theory 

building and conceptualization on TE. Burmaoglu et al. (2019) argued that the emergence 

concept should be qualitatively reviewed using the different dimensions drawn from philosophy 

of science, complexity, and economics. Ávila-Robinson et al. (2019) proposed an approach to 

investigate factors influencing the way emerging stem cell therapies emerged, based on an co-

evolutionary and system-oriented perspectives.  

In this study, we consider the basic idea of TE and propose that TE should be a relatively 

independent conception or dynamic phenomenon in a certain period. In fact, both potential 

emerging and disruptive technologies can approach concrete emergence (Danneels, 2004; 

Christensen et al., 2015; Li et al., 2017); even old or traditional technologies could reach 

emergence in specific periods for some reasons. Therefore, technology emergence can be 

treated as an interesting phenomenon for a specific technology. 

In terms of TE, its essence could be a variety of activities related to a specific technology, 



involving R&D, marketing, and commercialization and so forth. Meanwhile, the hidden and 

profound driving-force of TE could be the natural motivation to improve the competency, 

dynamic capability, or survival possibility under changing circumstances. Therefore, TE is also 

a spontaneous, self-organized and decentralized flocking or clustering of many different entities, 

which could be SMEs (small-medium enterprises), MNEs (multi-nation enterprises), 

microbusiness organizations, or research institutions. In addition, compared to other 

contemporary technologies, the technology related to TE should experience more rapid growth 

in certain acknowledged dimensions or perspectives.  

TE could be seen as a burst of macro-behavior or phenomena during a relatively short 

period -- the drivers or reasons for which rely on large-scale synchronous and self-organizing 

activities at the micro or individual level, which is inspired by the philosophy of swarm 

intelligence (Reynolds, 1987). 

Reynolds (1987) proposed the classic “Boids” swarm intelligence (SI) model designed to 

simulate the emergence of swarm intelligence. The Boids model only includes three simple 

heuristic-rules: (a) separation; (b) cohesion; and (c) alignment. With these, the Boids model 

can simulate the complicated behavior of flocks, herds, and schools. Vicser et al. (1995) 

attempted to provide a theoretical exploration of macro emergence of swarm intelligence based 

on statistical mechanics. Emergence can be seen as a classic concept or analytical tool in the 

framework of complex systems theory (Holland, 1998; Sharkey, 2006; Berrondo and Sandoval, 

2016; De et al., 2017). Actually, emergence theory is not only conducted to explain the social 

and natural phenomena on self-organization, system evolution, self-optimization etc., even our 

universe could be a specific emergence (Holland, 1998) Integrating TE with SI, we can define 

TE as the macro phenomenon through the simple behaviors of large-scale sets of individuals 

who are involved in the evolution or development of the specific technology. 

In the prior studies related to TE, technology evolution, or emerging technology 

management, they are preferable to consider TE as the occurred reality, especially in empirical 

or case analyses, and the emergence degree of technology were seldom mentioned. Whether 

the emergence of the technologies discussed (e.g., care robotics (Goeldner et al., 2015), 

synthetic biology (Raimbault et al, 2016; Shapira et al., 2017) really occurred could be raised, 

along with how we can evaluate the emergence degree for a specific technology. In other words, 



it is also very difficult for us to refuse or deny those hypothesized TEs. Little is known of how 

to identify whether a specific technology has emerged, or exactly when the emergence occurred 

(Carley et al., 2018). Several subsequent questions arise: when, why, and how the technology 

“emerges” in an observed period? Assessing or identifying whether or when the emergence for 

a specific technology has occurred is definitely valuable for strategic management and policy-

making decisions. Therefore, several relevant questions are raised: 

1) What metrics besides patents can be utilized to measure emergence for a specific 

(new/emerging/disruptive) technology? Enriched indicators for TE are still the 

critical issue for the relevant studies on TE, ET or technology forecasting by far 

(Porter et al., 2019; Ranaei et al., 2020). 

2) How do we compare the emergence degree or levels  among different 

contemporary technologies? Through the perspective of policy-making or 

strategic planning, can the emergence degree or levels between technologies be 

compared under the uniform standard or framework?  

3) How to explain the differences in emergence degree among technologies during a 

specific period or in some specific regions (e.g., nations, states, provinces, cities, 

or territories)? For example, while the emergence of a certain technology has 

really occurred, i.e. the emergence degree is very close to 1.0, the focus of the 

policy-making is to facilitate the commercialization; inversely, if the emergence 

degree is closer to zero, the R&D incentive could be a better option. However, if 

the emergence degree is close to 0.5, the relevant incentive policy maybe needs 

the compromising. Therefore, if we could get a more precise emergence degree or 

level about the specific technologies, the corresponding policy-making would be 

more targeted. 

In general, in evaluating the degree of TE, patents and publications are popular data 

sources (Porter and Detampel, 1995; Chang et al., 2009; Woolley, 2010; Small et al., 2014; 

Raimbault et al., 2016). In addition to the growth of patents and publications involving the 

specific technology, more indicators such as technological entrepreneurships and public 

awareness have also been proposed.  

 



3 To Measure Technology Emergence 

To further explore the definition, boundaries, connotations, and measurement of TE, we 

follow the research design described in Figure 3. 

 

Figure 3. Research flow and methods in this article 

In Figure 3, we intend to explore issues related to the evaluation of TE within a quantitative 

and integrated methodology. The gap between policy-making and a theoretical framework for 

evaluating TE appears significant. In essence, accurately evaluating TE involves 

multidisciplinary knowledge and crossing multi-research areas -- e.g., technology forecasting, 

emerging technology management, dynamic capabilities and strategic management, and 

discontinuity of technology evolution. 

To mitigate the gap between policy-making and a TE framework, the exploration in this 

paper includes such aspects as: (a) to further explore the conceptualization and 

operationalization of technology emergence, (b) to propose an integrated quantitative 



framework to evaluate the degree of emergence for a specific technology, and (c) to verify the 

proposed evaluation framework through empirical case studies. 

In the theoretical TE framework drawing on the philosophy of swarm intelligence, 

emergence is a dynamic macro-phenomenon relying on self-organization and nonlinear 

collective activities; in addition to deterring and confusing the predators through a huge shape, 

the efficiency of signal transmission can also be significantly improved, and then enhance the 

survival rate of individuals in the whole (Reynolds, 1987; Parpinelli and Lopes, 2011; Nguyen 

et al., 2012).  

In human society, under the pressure of market competition, technology-life cycling, or 

the encouragement from macro-strategies or policies, more small-sized stakeholders (including 

small or micro-enterprises and independent makers or researchers) could be attracted to engage 

in relevant activities on the specific technology development. After all, joining a potential 

technology emergence could result in finding more opportunities and facilitating the survival 

and development of those small start-ups. In turn, a variety of R&D, entrepreneurship and 

commercialization activities surrounding the specific technology could really facilitate 

emergence, having a concrete impact on the established market(s) and further creating new 

market branches and innovation opportunities.   

Although the conceptualization of TE could be linked to theories of technology evolution 

and technology lifecycle, it appears more similar to a victory or a burst phenomenon of a certain 

technology in competition with many contemporary technologies. Therefore, technology 

evolution and technology lifecycle sound more similar to generalized theories for any 

technology development. In terms of TE, considering the potential impact and implications of 

TE on strategic management and policy-making, it should be treated as an instrumental concept 

and explored via evaluating methods and tools. 

Based on the above, technology emergence could be considered as a phenomenon 

involving relatively large-scale swarming or clustering of individuals’ activities or 

behaviors involving a certain technology under the mechanisms of self-organization, 

synchronization, and collaboration. Furthermore, these activities or behaviors could cover 

such factors as R&D, technology spillover, triple-helix (collective University-Industry-

Government engagement), and commercialization. Meanwhile, technology emergence has 



brought forward a substantial and explicit impact on the established market and has even 

produced new market branches or segments. Therefore, the concept of TE could involve 

such three dimensions of swarm behavior:(a) one dimension is behavior of researchers who are 

affected by trend topics and publication trends; (b) the second one is behavior of market players 

who are directing their R&D efforts for gaining competitive advantage; (c) and the third 

dimension is behavior of society that technology diffusion rate is related to higher rate of 

technology acceptance. 

Based on the above concept of TE, as well as integrating the emergence ideas of swarm 

intelligence (Reynolds, 1987; Parpinelli & Lopes, 2011), TE could also have such 

characteristics as: 

1) Comparatively large -scale of participants (e.g., small-medium sized enterprises, 

individual makers, and research institutes); i.e. in the observed period 

/territory/sector/domain, the scale of participants on a specific technology could 

be larger than the most of contemporary technologies. For example, from 2016 to 

2019, the participant scale of 3D printing presents very popular than many 

manufacturing technologies (Maresch & Gartner, 2020; McCausland, 2020); 

2) Comparatively  rapid growth of R&D activities, also extending to active 

technology commercialization and intermediary services;  

3) Comparatively efficient signal/information transmission about the specific 

technology emergence, which could be divided into two dimensions: (a) 

technology spillover, diffusion across multi-categories or multi-fields have 

become reality by the large-scale following, learning behaviors among the 

participants or stakeholders; (b) public awareness on the observed technology 

have begun to increase. 

TE could be observed and evaluated through four dimensions/perspectives: R&D scale in 

major fields, growth of R&D activities, diffusion across categories and public awareness. A 

new evaluating framework on TE building upon the basic philosophy of swarm intelligence 

theory is shown in Figure 4. 



 

Figure 4. Evaluating TE through the perspective of swarm intelligence theory 

Figure 4 could offer an integrative, four-dimensional perspective to measure technology 

emergence, drawing on SI attributes that are introduced in the above; however, these proposed 

dimensions or indicators could be controversial and compromised. Whatever measuring TE or 

evaluating the emerging technologies, more and insightful dimensions or indicators are still the 

research fronts (Porter et al, 2019) .  We then consider each dimension in trying to develop 

computational tools to help track and measure TE. The nomenclature for this SI-oriented TE 

framework is shown in Table 4. 

Table 4. Nomenclature for Equations to Measure Technological Emergence 

Nomenclature Description 

m The amount of particular measurements -- e.g., R&D projects, publications, or 

patents 

n The involved items on those selected measurements -- e.g. categories, 

International Patent Classifications (IPCs), source titles, etc. 

iw  
The weight of a measurement i (i[1, m]) 

jw  
The weight of item j (j [1, n]) 



ijS  
The proportion of publications or patents related to the specific technology in 

the main categories, publication sources, or IPCs, e.g. a specific technology 

belongs to many categories, and the relevant patents could involve several 

IPCs, the proportions could be useful indicator. While more and more 

investment on this technology, the proportions of those relevant publications 

and patents on the specific technology could increase over time. 

ijG  
The annual growth that could involve, for instance, R&D investments, 

projects, academic publications, and/or patents. While a certain technology 

becoming popular or emerging, the annual growth of the relevant R&D 

activities could grow over year. 

iD  
The distributions of R&D projects, publications, or patents in different 

categories/IPCs and so forth. It is natural that the R&D activities could diffuse 

into many different areas over time. For example, with the emergence of 

nanotechnologies, more and more areas are involved. So, this indicator is 

expected to partly depict the knowledge/technology diffusion.  

iPP  
The public awareness about topic/technology i , which could be compared 

with the referenced topic/ technology, and then the similarity or distance 

formulas (e.g., Cosine similarity, Pearson correlation coefficient, or Euclidean 

distance) can be derived. 

 

（1）R&D Scale in Major Fields 

 The differences between two categories could be considered to measure or evaluate the 

participant scale. For example, significant differences between categories can be seen in Figure 

5 when retrieving published articles indexed in different categories of the WOS (Web of 

Science).  



 

Figure 5. The top 15 categories of articles indexed by WOS in 2018. 

In 2018 (as of examination), published articles indexed by the WOS core collection 

reached 1,604,798. Articles classified into MATERIALS SCIENCE MULTIDISCIPLINARY 

tallied 111,299. However, articles belonging to ENGINEERING MULTIDISCIPLINARY were 

just 13,695, and articles relating to ENGINEERING OCEAN only reached 2,001. In general, 

patent distribution in different categories or IPCs evidences an even wider range – some IPCs 

are huge and others are tiny. Therefore, computing the proportions of main categories, main 

publication sources, or IPCs is supposed to be significant for measuring, evaluating and 

comparing the emergence degree, which is related to a specific technology or scientific topic. 

Based on this consideration, computing the indicator of participant scale is shown in Equation 

(1). 
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In equation (1), Sij is the proportion of publications or patents related to the specific 

technology in the main categories, publication sources, or IPCs; w is the weight; m represents 

the amount of the involved indicators -- e.g., R&D projects, publications, and patents; and n 

represents the included categories, IPCs, or source titles (for example, the proportions of the 

relevant publications in the top 5 (n=5) source titles). 



（2）R&D Growth 

Regarding the evaluation of R&D activities, average speed of growth in a specific period 

could be a better choice than simply computing the ratio of the given-period amount and base-

period amount; the proposed computation method is shown in Equation (2). 



 




i

n

j

ij

m

i

i

growth
w

))G(n(w

Indicator

11

11               (2) 

In Equation (2), Gij represents the annual growth that could involve, for instance, R&D 

investments, projects, academic publications, and patents. wi is the weight; n is the number of 

years; m represents the amount of those involved measurements -- e.g., patents, R&D projects, 

and publications. 

（3）Diffusion Across Categories 

To evaluate the diffusion across categories, the distributions of R&D investments, projects, 

academic publications, and patents in different categories can be tallied.  
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In fact, the method depicted by Equation (3) could be an overly simplified solution that 

could be biased or controversial. For instance, the number of the relevant publications on 

nanotechnology is greater than 1.5 million in WOS, and those publications involve most all 

categories of WOS. Therefore, the proportion of involved categories is proposed to be an 

indicator of technology emergence. Theoretically, if we can find all relevant data, including 

R&D investments, projects, academic publications, and patents, Equation (3) could present more 

convincing information. However, R&D publications and patents could be more standard and 

broadly available data sources. For example, the classification methods of R&D projects differ 

significantly among countries or territories, even among different government departments in 

one country. 

（4）Public Awareness 

In certain relevant studies on social communication, public awareness, perceptions and 

concerns about emerging technologies are relatively important issues due to their potential 



impacts on social-economic systems (Renn and Benighaus, 2013; Read et al., 2016). In 

traditional methodology on public perceptions or awareness of technology development or 

emergence, randomized sampling or online surveys based on the Internet are prevalent methods. 

In addition to public surveys, theoretically, the retrieval frequency of the specific or observed 

technology from a search engine (e.g., Google or Baidu), as well as the number of hot reports 

or headlines, on the specific or observed technology are also valuable data sources to observe 

the degree of emergence of a specific technology. Of course, collecting data from search engines 

and news media, as well as guaranteeing the integrity of the collected data, are not easy for 

general academic research. For example, although Google Trends 

(http://www.google.com/trends) can provide the trend of search frequency for a specific word 

or term, how to integrate those trend curves of multiple words or terms surrounding a specific 

technology or topic into a synthetic trend curve seems out of the realm of current technical 

support from Google Trends. Meanwhile, to obtain an accurate trend of news headlines on a 

specific technology from all news media could face the same challenge as Google Trends, as 

well as other technical problems (e.g., how to integrate the data from online and traditional 

media, or how to identify, weigh, and calculate the news headlines for different media 

platforms). 

Based on the considerations above, a flexible computation method is proposed and 

presented in Equation (4). 
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Equation (4) presents an idea which supposes that data of public surveys, topic search 

frequencies or news headlines related to the observed technology can be collected under 

specific circumstances. For example, if the topic search trends can obtain the special technical 

support from Google and the data collection of news headlines can obtain third-party credible 

investigation, the public perceptions or awareness about the specific technology could be better 

choice. 

Conversely, if public survey data are the only data source for Equation (4), a well-known 

technology (e.g., nanotechnology) could be used as the baseline or reference - i.e., public 

http://www.google.com/trends


perceptions or awareness about those observed technologies can be compared with the 

referenced technology, and similarity or distance formulas (e.g., Cosine similarity, Pearson 

correlation coefficient, and Euclidean distance) could be utilized.  

Currently, large volumes of data are generated daily by social media, such as Facebook, 

Twitter, and WeChat; our ability to extract the relevant data regarding the specific technology 

from these social media platforms can also constitute a valuable supplement. 

Briefly, the conceptual framework on identifying and evaluating technology emergence 

illustrated above provides some rethinking and explorations at the operational level. In Figure 

4, four dimensions (or four indicators) are proposed based on the basic philosophy of swarm 

intelligence and complex science, and they are expected to further measure or compare 

emergence degree between different technologies, and the related computation methods for 

these four observation dimensions are also discussed  To further verify the proposed 

framework, a case study is next presented.  

Besides, regarding the weights ( i ) in the Equation (1)-Equation (4), in the context of 

practical operation, the Delphi method can be considered, or the questionnaire interview of 

domain experts can be conducted to assign the weights for the different indicators or metrics. 

In the following case study, the weights is assigned by the empirical or subjective rules, which 

can be improved in the future work. 

 

4 Case Study  

4.1 Data Collection 

During the past decades, forecasting emerging, disruptive, or breakthrough technologies 

has become a critical issue, and several relevant intellectual institutes attract broad attention -- 

for example, Word Economic Forum (WEF) in Davos, MIT Technology Review and Scientific 

American. Since 2003, the term -- “emerging technologies” has been substituted by 

“breakthrough technologies” in a relevant annual report of MIT’s Technology Review; and since 

2010, Scientific American has reported a top 10 emerging technologies provided by the specific 

workgroup of WEF, which engages thousands of experts in different research areas. To test the 

four indicators of emergence proposed above, we utilize the 2013 top ten emerging technologies 



in WEF’s annual report. Relatively speaking, the annual top 10 emerging technologies 

announced by the WEF attract large-scale attention, engaging academic and non-academic 

circles.  

This annual forecasting of emerging technologies provided by the WEF is supposed to 

impact policy-making at the national level. The 2013 top emerging technologies anticipated by 

the WEF are shown in Table 5. 

 

Table 5. 2013 top 10 emerging technologies anticipated by WEF3 

 Anticipated Emerging Technologies (Abbr.) 

#1 Online Electric Vehicles (OLEV) 

#2 3-D printing and remote manufacturing (3DP) 

#3 Self-healing materials (SHM) 

#4 Energy-efficient water purification (EEWP) 

#5 Carbon dioxide (CO2) conversion and use (CDCU) 

#6 Enhanced nutrition to drive health at the molecular level (ENDM) 

#7 Remote sensing (RS) 

#8 Precise drug delivery through nanoscale engineering (PDDNE) 

#9 Organic electronics and photovoltaics (OEP) 

#10 Fourth-generation reactors and nuclear-waste recycling (FGR&NWR) 

 

Actually, the mentioned ETs by WEF could be attributed to the macro technologies or 

technology clusters that differ from the mono-technology, to measure emergence of the 

technologies presented in Table 5, we draw on R&D publication data from the WOS Core 

Collection, and the data source for patents is Derwent Innovation Index (DII). Regarding the 

data on public awareness, a questionnaire is designed and the survey is outsourced to a third-

party investigation company. In the questionnaire, nanotechnology and graphene are also 

included as comparative baseline and verification factors in addition to the 10 technologies 

presented in Table 5. 

                             
3 https://www.weforum.org/agenda/2013/02/top-10-emerging-technologies-for-2013/ 



 

4.2 Analytical results 

To compute the four indicators on evaluating and measuring technology emergence, the 

publications and patents of the anticipated technologies are retrieved from WOS and DII 

through Boolean queries, and the search strings are shown in Table 6.  



Table 6. Search strings for the forecasted emerging technologies in Table 5 

 Boolean queries of publications in WOS Core Collection* Boolean queries of patents in Derwent Innovations Index** 

OLEV TS=("Electric Vehicle" OR "electric car" OR "electric bus" ) AND TS=("pick-up coil" OR 

"Wireless charg*" OR "wireless power" or "electromagnetic field broadcast*") 

 

TS=("Electric Vehicle" OR "electric car" OR "electric bus" ) AND 

TS=("pick-up coil" OR "Wireless charg*" OR "wireless power" or 

"electromagnetic field broadcast*") 

3DP TS=((3D OR 3-D OR "3 dimension*" OR "three dimension*" OR additive) NEAR/2 (print* 

OR fabricat* OR manufactur* OR product*)) 

TS=( "3D print*" OR "3-D print*" OR "3 dimension* print*" OR "three 

dimension* print*" OR "additive manufactur*" OR "additive fabricat*" OR 

"additive production*") 

SHM TS=("Self-healing material*" OR "self healing material*" OR "self repair* material*" OR 

"self-repair* material*") 

TS=("Self-healing material*" OR "self healing material*" OR "self repair* 

material*" OR "self-repair* material*") 

EEWP TS= ((“sea water” OR “seawater” OR “waste water” OR “wastewater”) near/10 (desalinat* 

OR purification OR purify*) ) AND TS =( energy or fuel) AND TS=efficien* 

TS= (sea water OR seawater OR waste water OR wastewater) AND TS= 

(desalinat* OR purification OR purify*) AND TS =( energy or fuel) AND 

TS=efficien*. 

CDCU TS= (“carbon dioxide” near/5 (conver* OR captur* OR sequestration)) TS= "carbon dioxide" AND TS= (conver* OR captur* OR sequestration) 

ENDM TS= (“malnutrition” OR “nutrient deficienc*”) AND TS=( “Enhanced nutrition” OR 

“molecular nutrition” OR “essential amino acid*” OR “molecular level” OR "genomic*") 

and TS=(people or human) 

TS= (malnutrition OR "nutrient deficienc*") AND TS=("Enhanced nutrition" 

OR "molecular nutrition" OR "essential amino acid*" OR "molecular level" 

OR "genomic*") and TS=(people or human) 



RRS TS=("remote sensing*" OR "low power sensing" OR "low power-sensing" OR "vehicle-to-

vehicle sensing" OR "vehicle to vehicle sensing") 

TS=("remote sensing*" OR "low power sensing" OR "low power-sensing" 

OR "vehicle-to-vehicle sensing" OR "vehicle to vehicle sensing") 

PDDNE TS=”drug deliver*” and TS=nano* TS="drug deliver*" and TS=nano* 

OEP TS=((“electronic*” OR “photovoltaic*”) near/3 organic*) OR TS=(“organic material*” 

AND (electronic* OR photovoltaic*)) 

TS="organic material*" AND TS=(electronic* OR photovoltaic*) 

FGR&NWR) TS=((”fourth generation” OR “fourth-generation ” ) near/3 (reactor OR nuclear)) OR 

TS=(("liquid metal-cooled” OR "liquid metal cooled") near/3 (reactor OR nuclear)) OR 

TS=((“nuclear-wast*” OR “nuclear wast*”) near/3 recycle* ) 

TS=(("fourth generation" OR "fourth-generation" ) AND (reactor OR 

nuclear)) OR TS=(("liquid metal-cooled" OR "liquid metal cooled") AND 

(reactor OR nuclear)) OR TS=((nuclear-wast* OR nuclear wast*) AND 

recycle* ) 

 



In Table 6, except for three-dimensional printing, prior studies did not yield a published 

Boolean formula for the other technologies. Therefore, the Boolean queries and search results 

are exploratory, and could be controversial. 

 

Table 7. Simple Boolean Queries on the technologies presented in Table 6 (2010-2016) ** 

Technologies Publications in WOS Patents in DII 

Online Electric Vehicles (OLEV) 357 774 

3-D printing and remote manufacturing (3DP) 19008 12576 

Self-healing materials (SHM) 538 152 

Energy-efficient water purification (EEWP) 641 1570 

Carbon dioxide (CO2) conversion and use (CDCU) 6254 15370 

Enhanced nutrition to drive health at the molecular level 

(ENDM) 

84 16 

Remote sensing (RS) 69971 5589 

Precise drug delivery through nanoscale engineering 

(PDDNE) 

49609 2967 

Organic electronics and photovoltaics (OEP) 14413 2454 

Fourth-generation reactors and nuclear-waste recycling 

(FGR&NWR) 

249 105 

 

** Because the 2013 top 10 emerging technologies anticipated by WEF are selected, 2013 activity is taken to 

be the middle point and then the retrieval period is tracked back to 2010. 

 

(1) Computing the indicator of scale based on Equation (1) 

Regarding the idea of Equation (1), the proportion of the relevant publications and patents 

on the observed technology in the main categories of source titles and IPC codes can be taken 

as the elements. In this instance, the main source titles (e.g., journals and conferences) of 

publications, as well as the main IPC codes of the relevant patents, are selected. For example, 

the retrieval results for Online Electric Vehicles (OLEV) are shown in Table 8. 

 

Table 8. The proportions of publications and patents related to OLEV in top 5 sources and IPC codes 

 Publications 
Top 5 

Sources* 
Count 

Proportion

** 
Patents 

Top 5 IPC 

codes  
Count 

Proportion*

* 

OLEV 357 IEEE ECCE 17 0.0036  774 H02J-017/00 455  0.0290  



IEEE Trans 

on PE 
14 0.0024  B60L-011/18 389  0.0128  

Annual 

IEEE 

APECE 

11 0.0030  H02J-007/00 366  0.0041  

IEEE Trans 

on IE 
11 0.0016  H02J-007/02 349  0.0207  

IEEE VPPC 10 0.0132  H02J-050/12 158  0.0884  

 

*IEEE ECCE: IEEE Energy Conversion Congress and Exposition; IEEE Trans on PE: IEEE Transactions on Power 

Electronics; Annual IEEE APECE: Annual IEEE Applied Power Electronics Conference and Exposition; IEEE 

Trans on IE: IEEE Transactions on Industrial Electronics; IEEE VPPC: IEEE Vehicle power and propulsion 

conference. 

**The proportions mean that the publications or patents on OLEV can take what percentage in the specific public 

source (journal or conference) or in a certain classification code of patent. For example, from 2010 to 2016, about 

14 articles on OLEV are published in IEEE Trans on PE, the proportion is 0.0024(0.24%). 

In relevant studies on TE, technology forecasting and technology foresight, an indicator 

of patent activity seems to be much more frequently utilized than publication data, and a simple 

retrieval trial is shown in Table 9. 

 

Table 9. The occurring frequency of patents and publications in a relevant article set on TE 

 Boolean query Search result Keyword 
Occurring 

Frequency** 

TS=("technolog* emerg*" OR "technolog* forecast*" 

OR "technolog* foresight" OR "technolog* 

evolution*") AND DOCUMENT TYPES: (Article) 

Timespan: 1997-2017. Indexes: SCI-EXPANDED, 

SSCI, CPCI-S, CPCI-SSH, CCR-EXPANDED, IC. 

1334 

patent 216 

Bibliometrics/

publication 
86 

**The occurring frequencies on patent and bibliometrics are calculated in such meta-data columns of WOS as AB 

(Abstract), ID (Indexing Keywords) and DE (Author Keywords). 

 

Based on the information presented in Table 9, patents are supposed to present more 

technology intelligence, so patent data are given more weight than publication data. Here, the 

weight of patents is supposed to be 0.7 -- that refers to the occurring frequencies in Table 8, and 

then the weight of the publication data is 0.3. Definitely, a more appropriate weighting 

method should be based on survey or expert interviews; therefore, this arbitrary 

weighting could be debatable and compromised. However, as a case instance, this simple 



weighting of patent and publication activity offers a convenient solution. Next, the indicator of 

scale can be calculated in the following Equation (5). 
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In Equation (5), OP stands for Proportion in Table 8; clearly, a more nuanced weighting 

approach would be warranted. For example, jw
 can be reassigned into variations based on the 

impact factors of journals or the reputation of conferences in the domain areas, and iw  can 

also be changed for specific reasons and even be changed into a dynamic variable. 

Following the calculation method presented in Equation (5), the scale indicators of the 

anticipated technologies presented in Table 5 are shown in Table 10. 

 

Table 10. Computing results of scale indicators about anticipated emerging technologies 

 Anticipated Emerging Technologies (Abbr.) Indicator of scale 

#1 Online Electric Vehicles (OLEV) 0.0147 

#2 3-D printing and remote manufacturing (3DP) 0.3338 

#3 Self-healing materials (SHM) 0.0043 

#4 Energy-efficient water purification (EEWP) 0.0216 

#5 Carbon dioxide (CO2) conversion and use (CDCU) 0.0723 

#6 Enhanced nutrition to drive health at the molecular level (ENDM) 0.0004 

#7 Remote sensing (RS) 0.0415 

#8 Precise drug delivery through nanoscale engineering (PDDNE) 0.0505 

#9 Organic electronics and photovoltaics (OEP) 0.0178 

#10 Fourth-generation reactors and nuclear-waste recycling (FGR&NWR) 0.0241 

 

From the results shown in Table 10, based only on the perspective of participant scale, the 

top 10 emerging technologies forecasted by WEF show great differences. The #2 technology, 

3DP, has attracted many more countries, research institutes and enterprises than the #6 

technology, ENDM. Comparing these two potential emerging technologies, some interesting 



phenomenon can be unveiled. For example, the top 5 countries authoring the publications and 

top 5 patent assignees related to 3DP and ENDM are shown in Tables 11 and 12. 

Table 11. Top 5 countries authoring publications and patent assignees related to 3DP up to 2016 

Top 5 countries/territories publications Top 5 assignees patents 

USA 5498 HEWLETT PACKARD DEV CO LP 142 

PEOPLES R CHINA 3141 
PRINT RITE UNICORN IMAGE 

PROD CO LTD ZHU 
137 

GERMANY 1644 UNITED TECHNOLOGIES CORP 136 

JAPAN 1321 STRATASYS INC 111 

ENGLAND 1219 
CAL COMP ELECTRONICS 

COMMUNICATIONS CO 
86 

 

Table 12. Top 5 countries authoring publications and patent assignees related to ENDM up to 2016 

Top 5 countries/territories publications Top 5 assignees patents 

USA 35 PRONUTRIA INC 5 

INDIA 12 PRONUTRIA BIOSCIENCES INC 4 

AUSTRALIA 6 BASU S 2 

ITALY 6 BERRY D A 2 

BRAZIL 4 CHEN Y 2 

ENGLAND 4 HAMILL M J 2 

FRANCE 4 POLLENERGIE 2 

MEXICO 4 SILVER N W 2 

NETHERLANDS 4   

PEOPLES R CHINA 4   

Compared to the more popular technology, 3DP, ENDM is more similar to a niche 

technology in the global scheme; however, ENDM could have equal or greater impacts on the 

socio-economic, environmental, and ecological systems than 3DP. ENDM is an attempt to 

improve the efficiency of nutrition absorption at the molecular level in the human body through 

sophisticated technologies involving bioscience, nutriology, and nanoscience. Next, ENDM 

could significantly reduce the total consumption of food for human beings, especially in 

territories experiencing food shortages and with possible starving periods in the future 

(Darntonhill et al., 2004; Morine et al., 2014; Rondanelli et al., 2016). 

 



(2) Computing the indicator of growth based on Equation (2) 

 

To compute the growth indicator, the geometric mean is also utilized in Equation (2). For 

example, the annual growth rates of publications and patents related to 3DP technology are 

shown in Table 13. 

Table 13. Annual growth of publications and patents related to 3DP 

 Forecasted emerging technologies Period 
Annual Growth of 

publications 

Annual Growth of 

patents 

#2 
3-D printing and remote manufacturing 

(3DP) 

2010-2011 1.0954  1.4819  

2011-2012 1.3100  1.5528  

2012-2013 1.2608  2.0366  

2013-2014 1.5904  3.5116  

2014-2015 1.3609  2.9224  

2015-2016 1.5351  1.4852  

 

Based on the data presented in Table 13, the growth indicator can be calculated based on 

Equation (2). For example, while using the same weighting methods as described for the 

previous indicator, the computation of the growth indicator on 3DP is shown in Equation (6). 
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Similarly, the growth indicators of the 10 technologies presented in Table 5 can be calculated 

and are shown in Table 14.  

 

Table 14. Computing results of growth indicators about the anticipated technologies presented in Table 5. 

 Anticipated Emerging Technologies (Abbr.) Indicator of growth 

#1 Online Electric Vehicles (OLEV) 0.7706 

#2 3-D printing and remote manufacturing (3DP) 0.8304 

#3 Self-healing materials (SHM) 0.3330 

#4 Energy-efficient water purification (EEWP) 0.1506 

#5 Carbon dioxide (CO2) conversion and use (CDCU) 0.0753 

#6 Enhanced nutrition to drive health at the molecular level (ENDM) 0.0159 

#7 Remote sensing (RS) 0.1668 



#8 Precise drug delivery through nanoscale engineering (PDDNE) 0.1093 

#9 Organic electronics and photovoltaics (OEP) 0.0364 

#10 Fourth-generation reactors and nuclear-waste recycling (FGR&NWR) 0.2647 

Based on the growth indicators presented in Table 14, during the period of 2010 to 2016, 

OLEV and 3DP achieved relatively rapid growth; inversely, ENDM and OEP experienced much 

slower growth. 

 

(3) Computing the indicator of Diffusion across categories or IPC codes 

To compute the diffusion indicator presented by Equation (3), the annual increase of 

publication categories and the annual increase of patent IPC codes related to the observed 

technology are taken into account; the annual increases for WOS categories and IPC codes 

related to the 10 technologies presented in Table 6 are shown in Table 15. 

 

Table 15. Annual growth of WOS categories and IPC codes related to those technologies in Table 6. 

 
Emerging Technologies 

forecasted by WEF 

Annual Increase of the 

relevant WOS categories*  

Annual  Increase of the 

relevant IPC codes* 
Period 

#1 OLEV 0.3286  0.5000  2010-2016 

#2 3DP 0.0553  0.6481  

#3 SHM 0.0609  0.2250  

#4 EEWP 0.2449  0.2993  

#5 CDCU 0.0452  0.0552  

#6 ENDM 0.0998  0.1690  

#7 RS 0.0212  0.0925  

#8 PDDNE 0.0217  0.0565  

#9 OEP 0.0322  0.0465  

#10 FGR&NWR 0.0410  0.1387  

*The annual increase of the relevant WOS categories or the relevant IPC codes on those different 

technologies is just calculated by the average growth in the assigned period. For example, the relevant 

IPC codes on 3DP achieved 64.81% annual growth from 2010 to 2016, a very impressed figure. 

Based on the data presented in Table 15 and the weighing method discussed above, the 

diffusion indicators for the anticipated emerging technologies can be computed and are shown 

in Table 16. 

 

 



Table 16. Computing results of diffusion indicator about the anticipated technologies presented in Table 5. 

 Anticipated Emerging Technologies (Abbr.) Indicator of diffusion 

#1 Online Electric Vehicles (OLEV) 0.4486  

#2 3-D printing and remote manufacturing (3DP) 0.4703  

#3 Self-healing materials (SHM) 0.1758  

#4 Energy-efficient water purification (EEWP) 0.2830  

#5 Carbon dioxide (CO2) conversion and use (CDCU) 0.0522  

#6 Enhanced nutrition to drive health at the molecular level (ENDM) 0.1482  

#7 Remote sensing (RS) 0.0711  

#8 Precise drug delivery through nanoscale engineering (PDDNE) 0.0461  

#9 Organic electronics and photovoltaics (OEP) 0.0422  

#10 Fourth-generation reactors and nuclear-waste recycling (FGR&NWR) 0.1094  

 

Additionally, based on the results presented in Tables 15 and 16, another interesting 

phenomenon could be revealed in that most of these anticipated technologies have slow 

increases of WOS categories, except for OLEV and EEWP. This could mean that academic 

studies on those technologies are relatively concentrated in a narrow domain. However, the 

activities related to patents could present more diversity, and therefore the growth of IPC codes 

could more significantly present diffusion than the academic outputs. 

 

(4) Computing the indicator of public awareness 

To probe public awareness about the emerging technologies anticipated by WEF, shown 

in Table 6, a simple questionnaire is designed. The survey is conducted by a professional 

company that is one of the largest China companies in online surveying. The degrees of public 

awareness are defined in five level Likert-scale. In this questionnaire, another three 

technologies (biomass energy, graphene, nanotechnology) are included as potential verification 

factors (or, a reference group) in addition to the ten possibly emerging technologies presented 

in Table 6,  

After we submit the questionnaire and our requirement regarding the number of valid 

responses to the platform of this company, the total fee of the online survey is calculated; after 



the survey fee is delivered to this platform, a large number of electronic requests regarding the 

survey will be sent to the terminals of potential respondents via such devices as mobile phone 

and laptop.  

In this survey, the number of valid responses is required to be no fewer than 1000; when 

the threshold is approached, all push messages concerning the survey will be stopped. Finally, 

3074 survey requests were sent in an approximately random manner; 1154 responses were 

collected in approximately one month and 1151 responses are complete. Descriptive statistics 

about this survey are shown in Figures 6 and 7, as well as Table 17. 

   

Fig. 6. Distribution of respondents’ education level               Fig. 7. Distribution of employer type 

  

From Figures 6 and 7, the majority of respondents have bachelor’s degrees and are 

employed by a wide variety of enterprises. This online survey shown in Table 17 could be 

biased for the reason that most respondents are literate and familiar with the Internet and cell 

phones. 

Table 17. Basic statistics of the online survey about public concerns on emerging technologies 

Item Mean* Std. Deviation 

Online Electric Vehicles (OLEV) 2.97 0.986 

3-D printing and remote manufacturing (3DP) 3.24 0.885 

Self-healing materials (SHM) 2.64 1.060 

Energy-efficient water purification (EEWP) 3.20 1.003 

Carbon dioxide (CO2) conversion and use (CDCU) 2.71 1.091 



Enhanced nutrition to drive health at the molecular level (ENDM) 2.59 1.111 

Remote sensing (RS) 3.21 1.003 

Precise drug delivery through nanoscale engineering (PDDNE) 2.88 1.017 

Organic electronics and photovoltaics (OEP) 3.02 1.064 

Fourth-generation reactors and nuclear-waste recycling (FGR&NWR) 2.54 1.092 

Graphene 2.75 1.115 

Biomass energy 2.81 1.095 

Nanotechnology 3.39 0.890 

*The scale for each question is based on Likert-scale, i.e. form 1-very unfamiliar to 5-very familiar. 

In this survey shown in Table 17, as one of the classical emerging technologies, 

nanotechnology, has been well-studied for prior plentiful studies in many different areas 

(Schummer, 2004; Porter et al, 2007; Islam and Ozcan, 2017). 

In this case study, we introduced a computing method of determining public awareness on 

specific technologies. First, the response pattern of 1151 respondents on nanotechnology is 

taken into the reference group. Second, the similarity between response patterns of the other 

observed technologies and the response pattern of nanotechnology are calculated. Because the 

tests of normality and independence between items are qualified, Pearson correlations are 

utilized to present the similarity between the observed technology and nanotechnology. The test 

instances of normality and independence are shown in Tables 18 and 19, and the computing 

results of the Pearson correlations are shown in Table 20. 

Table 18. An instance on tests of normality between OLEV and Nanotechnology 

 
Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Online Electric Vehicles (OLEV) .212 1151 .000 .906 1151 .000 

Nanotechnology .212 1151 .000 .886 1151 .000 

a Lilliefors Significance Correction 

Table 19. An instance on tests of independence (Chi-Square Tests) between OLEV and Nanotechnology 

 Value df Asymp. Sig. (2-sided) 

Pearson Chi-Square 307.777 b  16 .000 

Likelihood Ratio 250.220 16 .000 



Linear-by-Linear Association 189.964 1 .000 

N of Valid Cases 1151   

b 2 cells (8.0%) have expected count less than 5. The minimum expected count is 1.39. 



 

Table 20. Pearson correlations between Nanotechnology and the observed technologies presented in Table 6. 

 3-D printing 

and remote 

manufacturi

ng (3DP) 

Online 

Electric 

Vehicles 

(OLEV) 

Self-

healing 

materials 

(SHM) 

Energy-

efficient 

water 

purificatio

n (EEWP) 

Carbon 

dioxide 

(CO2) 

conversio

n and use 

(CDCU) 

Enhanced 

nutrition to 

drive health 

at the 

molecular 

level 

(ENDM) 

Remote 

sensing 

(RS) 

Precise drug 

delivery 

through 

nanoscale 

engineering 

(PDDNE) 

Organic 

electroni

cs and 

photovol

taics 

(OEP) 

Fourth-

generation 

reactors and 

nuclear-waste 

recycling 

(FGR&NWR) 

Nano- 

technology 

Pearson Correlation 0.459 0.406 0.404 0.501 0.409 0.429 0.508 0.488 0.497 0.388 

Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

N 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151 

Bootstra

p 

Bias 0.000 0.001 -0.001 0.000 0.000 0.001 -0.001 0.000 -0.002 0.000 

Std. Error 0.027 0.026 0.026 0.024 0.026 0.026 0.026 0.025 0.024 0.027 

95% 

Confidence 

Interval 

Lower 0.405 0.356 0.348 0.451 0.359 0.376 0.455 0.441 0.446 0.335 

Upper 0.512 0.457 0.456 0.546 0.459 0.476 0.558 0.535 0.542 0.442 

 

 



According to the computation of degree of technology emergence based on the proposed 

conceptual framework and quantitative formulas above, the emergence degrees for the 

emerging technologies anticipated by WEF could be evaluated and compared from four 

perspectives or dimensions, which are shown in Table 21. 

Table 21. Evaluation of emergence degree of those technologies presented in Table 5 via four indicators 

 Anticipated Emerging 

Technologies 

Indicator of 

scale 

Indicator of 

growth 

Indicator of 

diffusion 

Indicator of public 

awareness 

#1 OLEV 0.0147 0.7706 0.4486  0.406 

#2 3DP 0.3338 0.8304 0.4703  0.459 

#3 SHM 0.0043 0.3330 0.1758  0.404 

#4 EEWP 0.0216 0.1506 0.2830  0.501 

#5 CDCU 0.0723 0.0753 0.0522  0.409 

#6 ENDM 0.0004 0.0159 0.1482  0.429 

#7 RS 0.0415 0.1668 0.0711  0.508 

#8 PDDNE 0.0505 0.1093 0.0461  0.488 

#9 OEP 0.0178 0.0364 0.0422  0.497 

#10 FGR&NWR 0.0241 0.2647 0.1094  0.388 

 

To further visualize the analysis results presented in Table 21, one classic multi-criteria 

decision-making method (MCDM), TOPSIS (Technique for Order of Preference by Similarity 

to Ideal Solution) and its variations or the similar methods, e.g. IF-TOPSIS (Aloini et al., 2018), 

PROMETHEE (Behzadian et al., 2010; Vetschera & Almeida, 2012) also should be helpful. 

Here, the basic TOPSIS is conducted to ranking process (Shih et al., 2007; Behzadian et al., 

2012; Li and Porter, 2018), which is shown in Equations (7)-(10). 
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In Equation (7), the normalization formula is shown in Equation (8). 
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In TOPSIS, the positive ideal-solution )*(S  and negative ideal-solution *(-)S   are two 

reference points in the multi-dimension Euclidean space for those observed objects. 
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In the following step, the relative proximity to the two ideal-points (i.e. 
*( )

jS 
 and 

*( )

jS 
) 

for each point (observed or evaluated object) can be calculated by Equation (10). 
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Based on the data in Table 21 and the TOPSIS method depicted in Equations (7)-(10), the 

ranking result of emergence degree for the emerging technologies anticipated by WEF in 2013 

is visualized in Figure 8. 

 

Figure 8. Evaluation and rank on emergence of anticipated emerging technologies presented in Table 5. 

Based on the information in Figure 8, it can be concluded that 3DP reflects significant 

emergence. The emergence status or degree for the ten emerging technologies anticipated by 

WEF in 2013 could be divided into several different levels, shown in Table 22. 

Table 22. A proposed level partition for TE’s degree or status 



Emergence degree or status Anticipated Emerging technologies Range of Relative Proximity (C*) 

Level 5 3DP (0.8, 1.0] 

Level 4 None (0.6, 0.8] 

Level 3 OLEV (0.4, 0.6] 

Level 2 SHM, EEWP (0.2, 0.4] 

Level 1 CDCU, ENDM, RS, PDDNE, FGR&NWR (0.1, 0.2] 

Level 0 OEP (0.0, 0.1] 

 

Actually, the evaluation results of the emergence degree of these technologies seem to be 

reasonable and roughly coincide with our intuition. The relevant technology on three-

dimension printing (3DP) presents a much more significant emergence phenomenon than the 

other nine technologies. This seems to coincide with 3DP seeming to have the support of 

national strategies, such as Germany’s “Industry 4.0”, China’s “Made in China 2025”, and US 

“Reindustrialization.” 

The result presented in Table 22 could be controversial and even biased for possible 

technical reasons. It is offered as an illustration. However, the proposed conceptual framework 

of measuring technology emergence via these four dimensions deriving from the philosophy of 

swarm intelligence could be effective. 

In addition, the comparison of degree of emergence among different technologies 

presented in Figure 8 and Table 22 could attract interest in deeper exploration of underlying 

reasons. For example, the US and India are the most active countries in the relevant areas of 

ENDM for different reasons. Relatively speaking, the studies on ENDM from India are more 

about malnutrition than obesity. Meanwhile, as a developing country and having the largest 

population by far, China’s relevant R&D outputs on ENDM are pretty rare. Actually, China 

could still face dual challenges of malnutrition and obesity. In other words, the relevant R&D 

activities on ENDM in China could have more room for expansion than in most other territories. 

5 Discussion and Limitations 

In past decades, forecasting emerging technologies has been important for many countries. 

Several developed and developing nations have funded strategic projects of technology 



foresight – e.g., including the U.K., Japan and China (Georghiou, 1998; Mu et al.,2008; Breiner 

et al., 2010). However, very few studies have thoroughly analyzed the measurement and 

evaluation of TE. In turn, TE is often taken into an established or apparent phenomenon 

(Goeldner et al., 2015; Raimbault et al, 2016).  

Regarding how to measure emergence degree of a specific technology and compare the 

emergence degree between technologies, combining with the basic philology of swarm 

intelligence theory, an exploratory framework on TE and the relevant methods of computation 

are proposed and illustrated.  TE thus becomes a dynamic concept that can be measured, 

evaluated and compared under a quantitative framework. To explain and verify the proposed 

conceptual framework for TE, a case study on the emerging technologies anticipated by the 

WEF in 2013 is conducted. Although only such data as publications, patents and simple 

questionnaires are collected, the empirical analysis still demonstrates the effectiveness of the 

proposed framework on technology emergence. Therefore, the marginal contributions of this 

paper could have: 

(1) In prior studies, the possible differences between technology emergence and emerging 

technologies are seldom discussed. Evaluating TE or ET is still exploratory, and many issues 

on emergence degree or level of a specific technology need to be addressed. 

(2) We note some interesting TE phenomena. For example, on May 24th, 2019, SpaceX 

launched 60 satellites into space, and the Starlink plan was formally triggered. However, the 

core technologies of Starlink seem like the re-emergence of MOTOROLA's iridium program 

from about 20 years ago. 3D printing/additive manufacturing technology also could be the 

natural evolution of traditional rapid prototyping technology (Li and Porter 2018). Therefore, 

some old or obsolete technologies also could re-emerged in the future; and then TE seems have 

the broader boundary than emerging technologies. 

(3)Regarding the studies on TE, the multi-dimensional and insightful indicators are still 

the research fronts. Inspired by the philosophy of swarm-intelligence theory, an evaluation 

model and several dimensions that can be conducted to observe and measure TE are proposed; 

these could be a valuable supplement on the relevant theories or analytical methods on 

technology forecasting, foresight and technology evaluation and so on 

(4) In this paper, we attempt to define the levels of TE; five levels are proposed in the 



case study, which could be another valuable point that can approximately map the connections 

between TE and technology evolution (S-curve) by quantitative means. Meanwhile, the 

proposed framework and indicators can effectively differ technology emergence from 

technology maturity. Consequently, more precise advice or policies for technology 

development could be approached. 

In summary, the theoretical and empirical explorations on technology emergence 

illustrated in this paper, as well as the proposed framework and measurement methods for TE, 

offer a approach. This could hold promise for analyses to inform technology policy and 

management. We note some promising ways. First, traditional theories and conceptualizations 

of TE or ET could be further extended. Second, under the proposed framework, the 

operationalization of TE can be based on data such as publications, patents, and questionnaires 

and so forth. Third, the proposed conceptual framework and evaluation method for technology 

emergence not only can be utilized to evaluate or measure the emergence status for a specific 

technology, but can also be used to compare the relative degree of emergence among different 

technologies. Therefore, the explorations on TE measurement could facilitate the 

operationalization of TE and support exploration of possible effects on proximal areas such as 

technology life-cycle, technology paradigm, technology foresight, etc.  

Finally, emergence differences among technologies can present a signal to potential 

stakeholders and could affect subsequent policy-making. To enhance the emergence level for a 

specific technology, policy-making can probe the deeper reasons based on our proposed 

conceptual framework and evaluation methods. For example, if the participant scale of OLEV 

can be enlarged, the emergence level of OLEV might be significantly promoted. Regarding 

ENDM, how to stimulate China’s enthusiasm seems to be very important for enhancing 

emergence. In terms of the relevant technology on OEP, how to attract diversified attention 

from different areas, as well as how to further encourage and enhance interdisciplinary research 

and cooperation could effectively promote emergence. In addition, although 3DP technology 

presents a higher emergence level than the other nine technologies, the relevant public concerns 

of 3DP seem to be less than the others examined. Therefore, relevant studies of public 

perception, social communication and risk analysis on 3DP technology might warrant more 

attention from academic and enterprise circles (Li and Porter, 2018). 



Additionally, we acknowledge that this research has limitations. Although the theory of 

swarm intelligence is referenced, the explorations of TE remain weak and controversial, 

especially regarding its dynamic mechanisms. In the case study, except for 3DP, that reflects a 

published search string (Huang et al. 2017; Li and Porter 2018), the other nine technologies 

rely solely on descriptive information provided by the WEF and our subjective judgment (see 

Appendix) to retrieve pertinent records. Therefore, the search results on publications and 

patents about those technologies are possibly biased. In following studies, the search terms 

should be further refined through several bibliometric practices, e.g., further text analyses (to 

gauge the implications for precision and recall of adding or deleting terms to the Boolean search 

string, and possibly considering citation patterns as well (Porter et al, 2008; Li and Chu, 2017; 

Li et al., 2017).  

Considering the flexibility of the proposed conceptual framework for TE, slight bias or 

errors could be tolerable. Generalization of the conceptual framework for TE depicted by Figure 

4 has good prospects, but demands further assessment. Comparison with other computational 

possibilities would add substantial validation (Rotolo et al., 2015; Ávila-Robinson & Sengoku, 

2017; Burmaoglu et al., 2019 ).  

In follow-on studies, more accurate methods of weighting must be explored, which 

involves weighting the different data sources (e.g., publications, patents, projects, and 

questionnaires), as well as weighting different dimensions or indicators (e.g., scale, growth, 

diffusion and public concerns). 
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Table A1. Descriptions of the top 10 emerging technologies anticipated by WEF in 2013 

 Emerging Technologies (Abbr.) Summary Descriptions 

#1 Online Electric Vehicles (OLEV) Wireless technology can now deliver electric power to moving vehicles. In next-generation electric cars, pick-up coil sets under the vehicle 

floor receive power remotely via an electromagnetic field broadcast from cables installed under the road. The current also charges an onboard 

battery used to power the vehicle when it is out of range.  

#2 3-D printing and remote manufacturing 

(3DP) 

Three-dimensional printing allows the creation of solid structures from a digital computer file, potentially revolutionizing the economics of 

manufacturing if objects can be printed remotely in the home or office. The process involves layers of material being deposited on top of each 

other in to create free-standing structures from the bottom up.  

#3 Self-healing materials (SHM) One of the defining characteristics of living organisms is their inherent ability to repair physical damage. A growing trend in biomimicry is the 

creation of non-living structural materials that also have the capacity to heal themselves when cut, torn or cracked.  

#4 Energy-efficient water purification 

(EEWP) 

Where freshwater systems are over-used or exhausted, desalination from the sea offers near-unlimited water but a considerable use of energy 

– mostly from fossil fuels – to drive evaporation or reverse-osmosis systems. Emerging technologies offer the potential for significantly 

higher energy efficiency in desalination or purification of wastewater, potentially reducing energy consumption by 50% or more.  

#5 Carbon dioxide (CO2) conversion and 

use (CDCU) 

Long-promised technologies for the capture and underground sequestration of carbon dioxide have yet to be proven commercially viable, 

even at the scale of a single large power station. New technologies that convert the unwanted CO2 into saleable goods can potentially address 

both the economic and energetic shortcomings of conventional CCS strategies.  

#6 Enhanced nutrition to drive health at the Even in developed countries millions of people suffer from malnutrition due to nutrient deficiencies in their diets. Now modern genomic 



molecular level (ENDM) techniques can determine at the gene sequence level the vast number of naturally consumed proteins which are important in the human diet. 

The large-scale production of pure human dietary proteins based on the application of biotechnology to molecular nutrition can deliver health 

benefits such as muscle development, managing diabetes or reducing obesity. 

#7 Remote sensing (RS) The increasingly widespread use of sensors that allow often passive responses to external stimulate will continue to change the way we 

respond to the environment, particularly in the area of health. Examples include sensors that continually monitor bodily function – such as 

heart rate, blood oxygen and blood sugar levels – and, if necessary, trigger a medical response such as insulin provision.  

#8 Precise drug delivery through nanoscale 

engineering (PDDNE) 

Pharmaceuticals that can be precisely delivered at the molecular level within or around a diseased cell offer unprecedented opportunities for 

more effective treatments while reducing unwanted side effects. Targeted nanoparticles that adhere to diseased tissue allow for the micro-scale 

delivery of potent therapeutic compounds while minimizing their impact on healthy tissue, and are now advancing in medical trials.  

#9 Organic electronics and photovoltaics 

(OEP) 

Organic electronics – a type of printed electronics – is the use of organic materials such as polymers to create electronic circuits and devices. 

In contrast to traditional (silicon-based) semiconductors that are fabricated with expensive photolithographic techniques, organic electronics 

can be printed using low-cost, scalable processes such as ink jet printing, making them extremely cheap compared with traditional electronics 

devices.  

#10 Fourth-generation reactors and nuclear-

waste recycling (FGR&NWR) 

Current once-through nuclear power reactors use only 1% of the potential energy available in uranium, leaving the rest radioactively 

contaminated as nuclear “waste”. Spent-fuel recycling and breeding uranium-238 into new fissile material – known as Nuclear 2.0 – would 

extend already-mined uranium resources for centuries while dramatically reducing the volume and long-term toxicity of wastes, whose 

radioactivity will drop below the level of the original uranium ore on a timescale of centuries rather millennia.  
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