Global Tech Mining Conference 2018, Leiden

Neural Network-Based Paper-Matching with Relevant Products through Patents

Seonho Hwang, Juneseuk Shin

Contents

1. Motivation

- 2. Methodology
- 3. Illustrative Case
- 4. Conclusion

1. Motivation

- Planning future R&D leading to successful products in corporations
 - \rightarrow Need to understand research landscape from the product perspective

Products

"Knowledge Level"

Publications

But, it has not been feasible to automate the link between the two data

Product vs. Publications (2/2)

1. Motivation

Synthesizing Normalized Faces from Facial Identity Features

Forrester Cole¹ David Belanger^{1,2} Dilip Krishnan¹ Aaron Sarna¹ Inbar Mosseri¹ William T. Freeman^{1,3} ¹Google, Inc. ²University of Massachusetts Amherst ³MIT CSAIL

{fcole, dbelanger, dilipkay, sarna, inbarm, wfreeman}@google.com

Abstract

We present a method for synthesizing a frontal, neutralexpression image of a person's face given an input face photograph. This is achieved by learning to generate facial landmarks and textures from features extracted from a facial-recognition network. Unlike previous generative approaches, our encoding feature vector is largely invariant to lighting, pose, and facial expression. Exploiting this invariance, we train our decoder network using only frontal. neutral-expression photographs. Since these photographs are well aligned, we can decompose them into a sparse set of landmark points and aligned texture maps. The decoder then predicts landmarks and textures independently and combines them using a differentiable image warping operation. The resulting images can be used for a number of applications, such as analyzing facial attributes, exposure and white balance adjustment, or creating a 3-D avatar.

A Study of Compact Reserve Pricing Languages

MohammadHossein Bateni,[†] Hossein Esfandiari,[†] Vahab Mirrokni,[†] Saeed Seddighin[†] * †Google, tUniversity of Maryland {bateni,mirrohn) @google.com, {esfandiari, seddighin)@es.umd.edu

"Advertisement"

Abstract

Online advertising allows advertisers to implement fine-tuned targeting of users. While such precise targeting leads to more effective advertising, it introduces challengting multidimensional pricing and bidding problems for publishers and advertisers. In this context, advertisers and publishers need to deal with an exponential number of possibilities. As a result, designing efficient and *compact* multidimensional bidding and pricing systems and algorithms are practically important for online advertisement. Compact bidding languages have already been studied in the context of multiplicative bidding. In this paper, we study the compact pricing problem.

More specifically, we first define the multiplicative reserve price optimization problem (MRPDCP) and show that unlike the unrestricted reserve price system, it is NP-hard to find the best reserve price solution in this setting. Next, we present an efficient algorithm to compute a solution for MPPOP that achieves a logarithmic approximation of the optimum solution of the unrestricted setting, where we can set a reserve price for each individual impression type (i.e., one element in the Cartesian product of all features). We do so by characterizing the properties of an optimum solution. Furthermore, our empirical study confirms the effectiveness of multiplica-

1 Introduction

As a main advantage over traditional advertising, online advertising allows advertisers to target specific subsets of users via a very fine-tuned and descriptive targeting critiria. In these settings, both publishers and advertisers face challenging pricing and bid optimization problems in multidimensional settings. As a result, the space of possibilities for setting the price or declaring the bids are exponetial, even when restricted to the few most important features. This leads to interesting problems of designing efficient and *compact* multidimensional bidding and pricing systems and algorithms, which are practically important for online advertisement. While compact bidding languages have already been studied, our goal in this work is to study the compact pricing problem.

More specifically, in the context of online advertising for sponsored search or display ads, the space of impression types of interest to the advertiser is usually very big, specially because it is the Cartesian product of several features (such as geographic location, time of day/week), domains of which have sizes typically ranging from thousands to millions. These features have a big impact on the qual-

"Image"

- (1) Manual matching can be possible but takes too much resource
- (2) Patents are of both artifact and knowledge levels!!!

→ Patents could bridge the level difference between products and papers But, how?

Contents

1. Motivation

2. Methodology

3. Illustrative Case

4. Conclusion

Overall Process

2. Methodology

- (1) Data Collection : PF (Product Field), Patent Data, Papers
- (2) CPC-based Patent Search : Direct CPC (DCPC), Extended CPC (ECPC)
- (3) Classification : Training word2vec and CNN, and then classifying papers
- (4) Distribution Analysis : Analyzing the distributions of the classified papers

CPC-based Patent Search

2. Methodology

Objective : To search patents corresponding to each PF

Primary vs Secondary CPCs corresponding to a patent

Patent Number	Title	Primary CPC (pCPC)	Secondary CPC (sCPC)
US20170115853	Determining Image Captions	G06F3/04842	G06F17/30247, G06K9/00456, G06K 9/344, G06T7/0081, G06F3/0482, G06 K2209/01, G06T2207/10016
US9460348	Associating location history with photos	G06K9/00677	None

≻Direct CPC (DCPC) corresponding to a PF

PF	DCPC	CPC Description				
	General purpose image data processing					
Image	G06F17/30247	using image data, e.g. images, photos, pictures taken by a user				
8-	:					

PPAT (Primary PATent)

is defined to be the patents whose pCPCs are DCPC of the PF

➢ Needs for Extension

Patent Number	Title	Primary CPC	Secondary CPC
US20150169186	METHOD AND APPARATUS FOR SURFACING CONTENT DURING IMAGE SHARING	H04L67/10	G06F17/30, G06F17/30247 , G06K9/00 677, G06Q10/10, G06Q50/01, H04L67/14, H04N5/2251 H04W4/206

Extended CPC (ECPC) corresponding to a PF

2. Methodology

➢ Patent Search

PF	PF1		PF2	
pCPC	DCPC1	ECPC1	DCPC2	ECPC2
sCPC	None DCPC1		None	DCPC2
Searched Sets	PPAT1	PPAT1 EPAT1		EPAT2
Searched Patents	Union (PPAT1, EPAT1)		Union (PPA	T2, EPAT2)

* EPAT : Extended PATent

2. Methodology

- Objective : To classify papers according to PFs
- Convolutional Neural Network (CNN) for Image

Architecture of a CNN.—Source: <u>https://www.mathworks.com/videos/introduction-to-deep-learning-what-</u> are-convolutional-neural-networks--1489512765771.html

Excellent performance for image classifications thanks to the capability to extract local features that differentiate one image from another

2. Methodology

Convolutional Neural Network (CNN) for Text

2. Methodology

(1) Efficiency

- Usually N >> m \rightarrow Huge size of vocabulary to reasonable size of vectors

(2) Effectiveness

- Extracting features of texts based on semantic features of words

Due to the close relationship between 'classification' and feature extraction

2. Methodology

Word Embedding – Further gains

Model	MR	SST-1	SST-2	Subj	TREC	CR
CNN-static	81.0	45.5	86.8	93.0	92.8	84.7
CNN-non-static	81.5	48.0	87.2	93.4	93.6	84.3
CNN-multichannel	81.1	47.4	88.1	93.2	92.2	85.0

- Models
 - . CNN-static : A model with pre-trained vectors from word2vec
 - . CNN-non-static : Same as CNN-static with additional fine tuning for each task
- . CNN-multichannel : A model with two sets of word vectors
- Benchmark Datasets
 - . MR : Movie reviews with one sentence per review
 - . SST-1 : Stanford Sentiment Treebank
 - . SST-2 : Same as SST-1 but with neutral reviews removed and binary labels
 - . TREC : Question datasets task involving classifying a question into 6 types
 - . CR : Customer reviews of products classifying positive/negative reviews

 \rightarrow We'd better fine-tune the word embedding but we do not need multichannel

2. Methodology

➢ Word Embedding - Choices

Dataset	word2vec	Glove	word2vec+Glove
MR	81.24	81.03	81.02
SST-1	47.08	45.65	45.98
SST-2	85.49	85.22	85.45
Subj	93.20	93.64	93.66
TREC	91.54	90.38	91.37
CR	83.92	84.33	84.65

 Word2vec performs consistently better than Glove only or multichannel word embedding

2. Methodology

(1) Abstract, description, and claims are used for training word2vec

(2) Abstract and claims are used for training CNN-based classifier

Contents

1. Motivation

2. Methodology

3. Illustrative Case

4. Conclusion

Publications from Google Machine Intelligence

3. Illustrative Case

Google Al	About	Stories	Research	Education	Tools	Blog	Principles
			Publications	Teams &	Focus Areas	Peo	ple Join
Architecture		•	(Almost) Zero-S Shyam Upadhyay, <u>Ma</u>	Shot Cross-Li naal Faruqui, Gok	i ngual Spo l han Tur, <u>Dilek I</u>	ken Lang Hakkani-Tur,	uage Unders Larry Heck • F
Human-Compu Interaction and Visualization	uter 464 I		2 Billion Device Vijay Janapa Reddi, H	s and Countin	n g: An Indu Knies • <i>IEEE N</i>	ustry Pers <i>Micro,</i> vol. 38	(2018), pp. 6-21
Information Re and the Web	trieval 230		3D Scene Unde Jürgen Sturm, Martin	rstanding Bokeloh • (2018)		
Machine Intellig	gence 1172		A Bayesian Pers Sam Smith, Quoc V. L	e · <i>ICLR</i> (2018)	Generalizat	ion and S	tochastic G
Machine Perce	ption 534						
Machine Transl	ation 54		A Case for a Ra Jennimaria Palomaki.	Nge of Accep Olivia Rhinehart.	Michael Tseng	• Worksho	p on Subiectivity
Mobile System	s 75		(HCOMP 2018) (2018)	,	0		, , ,
Natural Langua Processing	ige 433		A Causal Frame Joseph Kelly, Jon Vav	work for Dig	ital Attribu Google LLC (tion (2018)	
Networking	214		A Datasat and	\ robito oturo	for Vieual F	Decemin	w with a Way
Quantum A.I.	38		Robert Guangyu Yang	g, Igor Ganichev,)	Kiao Jing Wang	g, <u>Jonathon S</u>	Shlens, David Sus
Robotics	51	-					

As of Sept. 2018

Data Collection

3. Illustrative Case

➢ Results

	Commence d'an Consola	(CPC	Seemshed	Papers (Machine Intelligence)	
PF	Corresponding Google Product	DCPC	ECPC (Total Number)	Patents		
Ad	AdWords, AdSense	G06Q30/02*	No Extension	18,156		
Image	Image Search, Google Photo	G06K9/00* G06T[1,3,5,7]/* G06F17/30047 G06F17/30247 G06F17/30256 G06F17/30265 G06F17/30271	G02B2027/0138 H04W84/12 (111)	28,937		
Mail	GMail	H04L51/* G06Q10/107 H04L41/26	G06F17/30424 H04W4/206 (17)	8,470	771	
Мар	Google Maps	G09B29/* G06T17/05 (21)	G01C21/00 H04W4/02 (32)	5,195		
Search	Google Search	G06F17/30*	No Extension	40,929		
Video	YouTube	H04N21/* G06F17/30858 (15)	G06F17/30038 H04N9/8205 (107)	20,724	Collected as of Mar. 2018. Published only after 2010	
		122,411	771			

1)* means a wild card. For example G06K9/00* includes all the codes starting with G06K9/00 such as G06K9/00087 and G06K9/0014

2) [] means a union. For example G06T[1,3,5,7]/* includes G06T1/*, G06T3/*, G06T5/*, and G06T7/*

3) When there are too many DCPCs or ECPCs to be displayed, only the first and the last are displayed in sorted order and total number follows in parenthesis

Classifier

3. Illustrative Case

Performance Comparison

(1) 5 classes for Decision Tree (DT), Linear Discriminant Analysis (LDA)Support Vector Machine (SVM1, SVM2) and 2 for Boosted Tree (BT)

Distribution Analysis

3. Illustrative Case

Annual distribution of papers

(1) 722 publications in the area of machine intelligence between '10 and '17(2) From 2014, the number increased drastically

Distribution Analysis

3. Illustrative Case

(1) The distributions of PFs in '10 \sim '13 and '14 \sim '17 are similar

(2) Search, Image and Ad are dominant in numbers of publications

 \rightarrow These fields are fundamental to other fields in Google

Contents

1. Motivation

2. Methodology

3. Illustrative Case

4. Conclusion

Conclusion

- Link between product (artifact level) and publications (knowledge level)
 - Patents are of both artifact and knowledge levels
 - Neural network can link data of different levels by taking advantage of patents

Implication

4. Conclusion

\succ A view on the classifier

The classifier can reveal detailed construction of publications from the product perspective like a prism for the white light

➤ Extension

The methodology can be extended from one area in one organization to multiple areas in multiple organizations

Thank You

seonho07.hwang@gmail.com